GloVe: Global Vectors for Word Representation

GloVe: Global Vectors for Word Representation

The GloVe dataset consists of a set of pre-trained word vectors using the famous GloVe unsupervised learning algorithm. You can use it to check out CedarDB’s vector capabilities.

ℹ️
This example uses the syntax of the pgvector PostgreSQL extension. CedarDB implements compatible vector support, so this example can run in both CedarDB as well as PostgreSQL.

The Dataset

The dataset comprises one table with two columns. Each row specifies a word and a vector representing that word in a 300 dimensional vector space. We can use this vector for word similarity search or finding interesting correlations.

CREATE TABLE words (
    word text,
    embedding vector(300)
);

Here is the row in the dataset for the word cedar:

cedar -0.035741 0.30627 -0.89386 -0.42192 0.4423 -0.0031244 0.1343 -0.1627 -0.56503 0.55582 0.04976 -0.38961 -0.70721 -0.22251 -0.63599 0.010212 0.44991 1.4495 0.14731 0.49291 -0.43543 0.43853 0.89911 0.7473 -0.32095 -0.37141 0.011313 0.40663 -0.054914 0.052961 -0.089976 0.61442 -0.098188 -0.55887 0.17341 0.2009 0.36195 -0.028696 -0.61912 0.25283 -0.43368 0.52983 0.29688 -0.45046 0.86235 -0.033074 -0.40946 -0.88257 0.5405 0.31433 -0.66538 -0.40765 0.59338 0.15275 -0.03373 -0.58895 0.082962 0.19579 -0.33768 0.17269 -0.1885 0.28613 -0.0763 0.47297 -0.25998 0.43033 0.2628 -0.41632 -0.44285 0.34218 -0.23407 0.32939 -0.18196 0.36787 0.50732 0.62926 0.35413 0.07248 -0.7088 -0.48028 0.069412 0.1061 0.4844 0.41549 0.075002 0.087866 1.093 1.4178 -0.18223 0.19481 0.3665 -0.38657 0.3705 -0.067371 -0.15721 0.67263 0.60278 0.18825 -0.47069 0.23095 0.53747 0.15372 0.28769 -0.23418 -0.065959 -1.3184 0.3386 0.49832 0.23596 -0.84735 0.034094 0.89097 -0.039864 -0.18604 -0.44887 0.65578 0.49864 0.056556 -0.14284 0.21705 -0.31605 -0.080527 -0.26386 0.068591 -0.24204 0.0085045 0.12535 0.25822 -0.45192 -0.19591 -0.28525 -0.21406 -0.23933 -0.079567 0.077772 -0.044807 0.13742 -0.38121 0.51215 -0.15845 -1.1855 0.48977 -0.11569 0.071149 -0.21234 0.63803 -0.074817 0.12214 0.22618 -0.30874 0.3661 -0.45319 -0.46136 0.25993 0.20315 -0.14687 0.30222 -0.10477 0.24161 0.7081 0.158 0.22283 -0.57998 0.51195 0.095581 0.37133 0.038913 -0.10041 0.18371 0.12732 -0.078713 0.015901 -0.27671 0.82712 -0.55948 0.65985 0.27161 -0.056506 0.81918 -0.176 -0.10151 0.3601 0.43843 -0.019308 0.09502 0.21175 -0.66881 -0.42617 -0.033088 0.13867 -0.29438 -0.17065 -0.050052 0.046184 -0.46501 -0.28081 -0.055363 0.12984 0.24892 0.15695 -0.051954 -0.067292 -0.15835 -0.023483 0.34172 0.53221 -0.26182 0.28651 0.40593 -0.029766 -0.19969 0.80703 0.37087 -0.14587 0.26325 0.23282 0.33873 0.10298 0.29892 -0.27437 -0.75017 0.51737 0.20513 0.52544 -0.13263 0.5456 -0.53637 0.68089 0.062844 0.63056 0.76018 -0.23215 -0.60312 0.045453 0.23291 -0.71336 0.31855 -0.98226 0.31373 0.49496 0.29236 -0.052623 -0.22314 -0.17556 -0.24841 -0.27599 0.28926 0.006082 0.47148 -0.55711 0.40644 -0.19782 0.10583 0.080815 0.074759 0.42763 0.66005 -0.5212 0.091959 0.090721 0.63784 -0.5445 0.3681 -0.18135 0.095805 -0.2006 -0.52705 -0.29647 -0.97121 0.57904 -0.26934 0.3796 0.22758 -0.32191 -0.43989 -0.6026 0.34945 0.42713 -0.15097 -0.020774 -0.43159 0.19217 -0.12373 -0.1276 0.086802 0.21242 0.54875 0.045418 0.016401 -0.17856 -0.098253 0.092168 -0.52934 -0.51203 -0.2586 -0.028755 0.40569 -0.54969 -0.20679 -0.28477

Obtain the data

You can download the dataset from the GloVe project website. There are multiple versions with differing training sets and vectors of different dimensionalities. Let’s choose the biggest dataset “Common Crawl (840B tokens, 2.2M vocab, cased, 300d vectors”.

To obtain the data simply run

wget https://nlp.stanford.edu/data/glove.840B.300d.zip
unzip glove.840B.300d.zip
ℹ️
The zip archive is about 2 GB to download, which decompresses to about 5.3 GB.

Import the data into CedarDB

To import the data, ensure that CedarDB is running and then run the following Python script. It creates the words table, transforms the data into the right format, inserts it and creates an index on the words column.

import numpy as np
import psycopg
import pgvector.psycopg


if __name__ == '__main__':
     # use your own credentials here 
    connstr = "host=/tmp port=5432 dbname=postgres user=postgres"
    
    with psycopg.connect(connstr) as conn:
        pgvector.psycopg.register_vector(conn)
        with conn.cursor() as cur:
            cur.execute("""create table if not exists words(
                                word text,
                                embedding vector(300))""")
            conn.commit()

            with cur.copy("COPY words (word, embedding) FROM STDIN (FORMAT TEXT)") as copy:
                copy.set_types(["text", "vector"])
                with open("/path/to/glove.840B.300d.txt") as file:
                    for line in file:
                        # word and vector are separated by space
                        (word, vec) = line.split(' ', 1)
                        # dimensions of the vector are also separated by space
                        vec2 = np.array(vec.split(' '))
                        copy.write_row((word, vec2))
            conn.commit()

            cur.execute ("create index on words(word)")
            conn.commit()
        

Queries

Nearest Neighbors

Let’s first find the 10 nearest neighbors for a given word:

select b.word, 
       a.embedding <=> b.embedding as distance 
from words a cross join 
     words b 
where a.word = 'cedar' 
    and b.word != a.word 
order by distance asc 
limit 10;

This query calculates the distance of the vector of the word cedar with every other word’s vector, sorts them by distance and then returns the 10 nearest words. The result seems reasonable:

   word   |     distance      
----------+-------------------
 oak      | 0.230610596571098
 pine     | 0.235847765821746
 cypress  | 0.275875426234673
 redwood  | 0.295171770883236
 wood     |  0.30067442896967
 fir      | 0.316822897654372
 birch    | 0.319249692107759
 spruce   | 0.329496165973873
 hickory  | 0.338934022447928
 hardwood | 0.365919178569564
(10 rows)
ℹ️
We’re using the cosine distance (<=>) as metric. CedarDB also supports other distance metrics. For a full list, take a look at the vector reference.
ℹ️
Interestingly, the word most dissimilar to cedar is Counterinsurgency which makes sense for a revolutionary database system like CedarDB, I guess ;).

Linear Substructures

Since each word’s vector representation has so many dimensions, we can look at similarities among multiple dimensions using vector arithmetic.

Take for example the words cat, feline, and dog. A cat is a feline, but what would be the corresponding word for a dog? Let’s ask CedarDB!

select target.word 
from
    words cat cross join
    words feline cross join
    words dog cross join
    words target
where cat.word = 'cat'
    and feline.word = 'feline'
    and dog.word = 'dog'
order by (feline.embedding - cat.embedding) + dog.embedding <=> target.embedding limit 1;

Take a look at the order by clause: It subtracts the “catness” from the word “feline”, adds the “dogness” and finally searches for the word closest to the resulting vector. Let’s look at the result:

  word  
--------
 canine
(1 row)

Bingo!

You can try to find more such relations with the following prepared statement:

-- a is to b like c is to ...?
prepare deduce as 
    select d.word, 
        d.embedding <=> (b.embedding - a.embedding) + c.embedding as distance 
    from
        words a cross join
        words b cross join
        words c cross join
        words d
    where a.word = $1::text
        and b.word = $2::text
        and c.word = $3::text
    order by distance asc limit 1;

We recommend the following word triplets as a starting point:

execute deduce('Germany', 'Berlin', 'France');
execute deduce('dark', 'darker', 'soft');
execute deduce('sister', 'brother', 'niece');